Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22279558

RESUMO

BackgroundT cells are important in preventing severe disease from SARS-CoV-2, but scalable and field-adaptable alternatives to expert T cell assays are needed. The interferon-gamma release assay QuantiFERON platform was developed to detect T cell responses to SARS-CoV-2 from whole blood with relatively basic equipment and flexibility of processing timelines. Methods48 participants with different infection and vaccination backgrounds were recruited. Whole blood samples were analysed using the QuantiFERON SARS-CoV-2 assay in parallel with the well-established Protective Immunity from T Cells in Healthcare workers (PITCH) ELISpot, which can evaluate spike-specific T cell responses. AimsThe primary aims of this cross-sectional observational cohort study were to establish if the QuantiFERON SARS-Co-V-2 assay could discern differences between specified groups and to assess the sensitivity of the assay compared to the PITCH ELISpot. FindingsThe QuantiFERON SARS-CoV-2 distinguished acutely infected individuals (12-21 days post positive PCR) from naive individuals (p< 0.0001) with 100% sensitivity and specificity for SARS-CoV-2 T cells, whilst the PITCH ELISpot had reduced sensitivity (62.5%) for the acute infection group. Sensitivity with QuantiFERON for previous infection was 12.5% (172-444 days post positive test) and was inferior to the PITCH ELISpot (75%). Although the QuantiFERON assay could discern differences between unvaccinated and vaccinated individuals (55-166 days since second vaccination), the latter also had reduced sensitivity (55.5%) compared to the PITCH ELISpot (66.6%). ConclusionThe QuantiFERON SARS-CoV-2 assay showed potential as a T cell evaluation tool soon after SARS-CoV-2 infection but has lower sensitivity for use in reliable evaluation of vaccination or more distant infection. Graphical abstractWith the exception of acute infection group, the PITCH ELISpot S1+S2 had greater sensitivity for SARS-CoV-2 specific T cell responses compared with the QuantiFERON SARS-CoV-2 assay tube Ag3. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=64 SRC="FIGDIR/small/22279558v1_ufig1.gif" ALT="Figure 1"> View larger version (13K): org.highwire.dtl.DTLVardef@1913a88org.highwire.dtl.DTLVardef@199b88corg.highwire.dtl.DTLVardef@12309cborg.highwire.dtl.DTLVardef@15807a0_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277368

RESUMO

Antibodies can have beneficial, neutral, or harmful effects so resolving an antibody repertoire to its target epitopes may explain heterogeneity in susceptibility to infectious disease. However, the three-dimensional nature of antibody-epitope interactions limits discovery of important targets. We describe and experimentally validated a computational method and synthetic biology pipeline for identifying structurally stable and functionally important epitopes from the SARS-CoV-2 proteome. We identify patterns of epitope-binding antibodies associated with immunopathology, including a non-isotype switching IgM response to a membrane protein epitope which is the strongest single immunological feature associated with severe COVID-19 to date (adjusted OR 72.14, 95% CI: 9.71 - 1300.15). We suggest the mechanism is T independent B cell activation and identify persistence (> 1 year) of this response in individuals with long COVID particularly affected by fatigue and depression. These findings highlight a previously unrecognized coronavirus host:pathogen interaction which is potentially an upstream event in severe immunopathology and this may have implications for the ongoing medical and public health response to the pandemic. The membrane protein epitope is a promising vaccine and monoclonal antibody target which may complement anti-spike vaccination or monoclonal antibody therapies broadening immunological protection. One-Sentence SummaryUsing a novel B cell epitope discovery method we have identified antibody signatures strongly associated with SARS-CoV-2 immunopathology and suggest the membrane protein is a pathological T independent antigen.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-500063

RESUMO

Some COVID-19 patients are unable to clear their infection or are at risk of severe disease, requiring treatment with neutralising monoclonal antibodies (nmAb) and/or antivirals. The rapid roll-out of novel therapeutics means there is limited understanding of the likely genetic barrier to drug resistance. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to the detection of emerging drug resistance. Here we report the accrual of mutations in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the epitopes of the respective nmAbs. For casirivimab+imdevimab these are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276196

RESUMO

Obesity is associated with an increased risk of severe Covid-19. However, the effectiveness of SARS-CoV-2 vaccines in people with obesity is unknown. Here we studied the relationship between body mass index (BMI), hospitalization and mortality due to Covid-19 amongst 3.5 million people in Scotland. Vaccinated people with severe obesity (BMI>40 kg/m2) were significantly more likely to experience hospitalization or death from Covid-19. Excess risk increased with time since vaccination. To investigate the underlying mechanisms, we conducted a prospective longitudinal study of the immune response in a clinical cohort of vaccinated people with severe obesity. Compared with normal weight people, six months after their second vaccine dose, significantly more people with severe obesity had unquantifiable titres of neutralizing antibody against authentic SARS-CoV-2 virus, reduced frequencies of antigen-experienced SARS-CoV-2 Spike-binding B cells, and a dissociation between anti-Spike antibody levels and neutralizing capacity. Neutralizing capacity was restored by a third dose of vaccine, but again declined more rapidly in people with severe obesity. We demonstrate that waning of SARS-CoV-2 vaccine-induced humoral immunity is accelerated in people with severe obesity and associated with increased hospitalization and mortality from breakthrough infections. Given the prevalence of obesity, our findings have significant implications for global public health.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275865

RESUMO

Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARSCoV2. However, the maintenance of such responses, and hence protection from disease, requires careful characterisation. In a large prospective study of UK healthcare workers (Protective immunity from T cells in Healthcare workers (PITCH), within the larger SARSCoV2 immunity and reinfection evaluation (SIREN) study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. We make three observations: Firstly, the dynamics of humoral and cellular responses differ; binding and neutralising antibodies declined whereas T and memory B cell responses were maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels, broadened neutralising activity against variants of concern including omicron BA.1, BA.2 and BA.5, and boosted T cell responses above the 6 month level post dose 2. Thirdly, prior infection maintained its impact driving larger as well as broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. In conclusion, broadly cross-reactive T cell responses are well maintained over time, especially in those with combined vaccine and infection-induced immunity (hybrid immunity), and may contribute to continued protection against severe disease.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-492554

RESUMO

The Omicron lineage of SARS-CoV-2, first described in November 2021, spread rapidly to become globally dominant and has split into a number of sub-lineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africas Gauteng region uncovered two new sub-lineages, BA.4 and BA.5 which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences and, although closely related to BA.2, contain further mutations in the receptor binding domain of spike. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by serum from triple AstraZeneca or Pfizer vaccinated individuals compared to BA.1 and BA.2. Furthermore, using serum from BA.1 vaccine breakthrough infections there are likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270447

RESUMO

BackgroundT cell responses to SARS-CoV-2 following infection and vaccination are less characterised than antibody responses, due to a more complex experimental pathway. MethodsWe measured T cell responses in 108 healthcare workers (HCWs) in an observational cohort study, using the commercialised Oxford Immunotec T-SPOT Discovery SARS-CoV-2 assay (OI T-SPOT) and the PITCH ELISpot protocol established for academic research settings. ResultsBoth assays detected T cell responses to SARS-CoV-2 spike, membrane and nucleocapsid proteins. Responses were significantly lower when reported by OI T-SPOT than by PITCH ELISpot. Four weeks after two doses of either Pfizer/BioNTech BNT162b or ChAdOx1 nCoV-19 AZD1222 vaccine, the responder rate was 63% for OI T-SPOT Panels1+2 (peptides representing SARS-CoV-2 spike protein excluding regions present in seasonal coronaviruses), 69% for OI T-SPOT Panel 14 (peptides representing the entire SARS-CoV-2 spike), and 94% for the PITCH ELISpot assay. The two OI T-SPOT panels correlated strongly with each other showing that either readout quantifies spike-specific T cell responses, although the correlation between the OI T-SPOT panels and the PITCH ELISpot was moderate. ConclusionThe standardisation, relative scalability and longer interval between blood acquisition and processing are advantages of the commercial OI T-SPOT assay. However, the OI T-SPOT assay measures T cell responses at a significantly lower magnitude compared to the PITCH ELISpot assay, detecting T cell responses in a lower proportion of vaccinees. This has implications for the reporting of low-level T cell responses that may be observed in patient populations and for the assessment of T cell durability after vaccination.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-471045

RESUMO

On the 24th November 2021 the sequence of a new SARS CoV-2 viral isolate spreading rapidly in Southern Africa was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265651

RESUMO

Background and aimsTo determine the impact of the COVID-19 pandemic on the population with chronic Hepatitis B virus (HBV) infection under hospital follow-up in the UK, we quantified the coverage and frequency of measurements of biomarkers used for routine surveillance (ALT and HBV viral load). MethodsWe used anonymised electronic health record data from the National Institute for Health Research (NIHR) Health Informatics Collaborative (HIC) pipeline representing five UK NHS Trusts. ResultsWe report significant reductions in surveillance of both biomarkers during the pandemic compared to pre-COVID years, both in terms of the proportion of patients who had [≥]1 measurement annually, and the mean number of measurements per patient. ConclusionsFurther investigation is required to determine whether these disruptions will be associated with increased rates of adverse chronic HBV outcomes.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265497

RESUMO

1.In March 2020, the Rare and Imported Pathogens Laboratory at Public Health England, Porton Down, was tasked by the Department of Health and Social Care with setting up a national surveillance laboratory facility to study SARS-CoV-2 antibody responses and population-level sero-surveillance in response to the growing SARS-CoV-2 outbreak. In the following 12 months, the laboratory tested more than 160,000 samples, facilitating a wide range of research and informing PHE, DHSC and UK government policy. Here we describe the implementation and use of the Euroimmun anti-SARS-CoV-2 IgG assay and provide an extended evaluation of its performance. We present a markedly improved sensitivity of 91.39% ([≥]14 days 92.74%, [≥]21 days 93.59%) compared to our small-scale early study, and a specificity of 98.56%. In addition, we detail extended characteristics of the Euroimmun assay: intra- and inter-assay precision, correlation to neutralisation and assay linearity.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264916

RESUMO

There is substantial interest regarding the perceived risk that immunomodulator and biologic therapy could have on COVID-19 disease severity among patients with inflammatory bowel disease (IBD) and clinicians. In this study, we show that infliximab/thiopurine combination therapy is associated with significantly lower IgA, a range of lower IgG responses as well as impaired neutralising antibody responses, compared to responses observed in healthy individuals. We also demonstrate that whilst IgG responses were significantly reduced in individuals with IBD treated with infliximab or vedolizumab monotherapy compared to healthy controls, there was no significant reduction in IgA and neutralising antibody responses. As neutralising antibody responses correlate with protection, this observation may provide the mechanistic explanation for the observation reported by the SECURE-IBD study that individuals on infliximab/thiopurine combination therapy were at greater risk of severe COVID-19 outcomes than patients on monotherapy.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264207

RESUMO

Duration of protection from SARS-CoV-2 infection in people with HIV (PWH) following vaccination is unclear. In a sub-study of the phase 2/3 the COV002 trial (NCT04400838), 54 HIV positive male participants on antiretroviral therapy (undetectable viral loads, CD4+ T cells >350 cells/ul) received two doses of ChAdOx1 nCoV-19 (AZD1222) 4-6 weeks apart and were followed for 6 months. Responses to vaccination were determined by serology (IgG ELISA and MesoScale Discovery (MSD)), neutralisation, ACE-2 inhibition, gamma interferon ELISpot, activation-induced marker (AIM) assay and T cell proliferation. We show that 6 months after vaccination the majority of measurable immune responses were greater than pre-vaccination baseline, but with evidence of a decline in both humoral and cell mediated immunity. There was, however, no significant difference compared to a cohort of HIV-uninfected individuals vaccinated with the same regimen. Responses to the variants of concern were detectable, although were lower than wild type. Pre-existing cross-reactive T cell responses to SARS-CoV-2 spike were associated with greater post-vaccine immunity and correlated with prior exposure to beta coronaviruses. These data support the on-going policy to vaccinate PWH against SARS-CoV-2, and underpin the need for long-term monitoring of responses after vaccination.

13.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-449178

RESUMO

Severe lung damage in COVID-19 involves complex interactions between diverse populations of immune and stromal cells. In this study, we used a spatial transcriptomics approach to delineate the cells, pathways and genes present across the spectrum of histopathological damage in COVID-19 lung tissue. We applied correlation network-based approaches to deconvolve gene expression data from areas of interest within well preserved post-mortem lung samples from three patients. Despite substantial inter-patient heterogeneity we discovered evidence for a common immune cell signaling circuit in areas of severe tissue that involves crosstalk between cytotoxic lymphocytes and pro-inflammatory macrophages. Expression of IFNG by cytotoxic lymphocytes was associated with induction of chemokines including CXCL9, CXCL10 and CXCL11 which are known to promote the recruitment of CXCR3+ immune cells. The tumour necrosis factor (TNF) superfamily members BAFF (TNFSF13B) and TRAIL (TNFSF10) were found to be consistently upregulated in the areas with severe tissue damage. We used published spatial and single cell SARS-CoV-2 datasets to confirm our findings in the lung tissue from additional cohorts of COVID-19 patients. The resulting model of severe COVID-19 immune-mediated tissue pathology may inform future therapeutic strategies. One Sentence SummarySpatial analysis identifies IFN{gamma} response signatures as focal to severe alveolar damage in COVID-19 pneumonitis.

14.
- The COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium; David J Ahern; Zhichao Ai; Mark Ainsworth; Chris Allan; Alice Allcock; Azim Ansari; Carolina V Arancibia-Carcamo; Dominik Aschenbrenner; Moustafa Attar; J. Kenneth Baillie; Eleanor Barnes; Rachael Bashford-Rogers; Archana Bashyal; Sally Beer; Georgina Berridge; Amy Beveridge; Sagida Bibi; Tihana Bicanic; Luke Blackwell; Paul Bowness; Andrew Brent; Andrew Brown; John Broxholme; David Buck; Katie L Burnham; Helen Byrne; Susana Camara; Ivan Candido Ferreira; Philip Charles; Wentao Chen; Yi-Ling Chen; Amanda Chong; Elizabeth Clutterbuck; Mark Coles; Christopher P Conlon; Richard Cornall; Adam P Cribbs; Fabiola Curion; Emma E Davenport; Neil Davidson; Simon Davis; Calliope Dendrou; Julie Dequaire; Lea Dib; James Docker; Christina Dold; Tao Dong; Damien Downes; Alexander Drakesmith; Susanna J Dunachie; David A Duncan; Chris Eijsbouts; Robert Esnouf; Alexis Espinosa; Rachel Etherington; Benjamin Fairfax; Rory Fairhead; Hai Fang; Shayan Fassih; Sally Felle; Maria Fernandez Mendoza; Ricardo Ferreira; Roman Fischer; Thomas Foord; Aden Forrow; John Frater; Anastasia Fries; Veronica Gallardo Sanchez; Lucy Garner; Clementine Geeves; Dominique Georgiou; Leila Godfrey; Tanya Golubchik; Maria Gomez Vazquez; Angie Green; Hong Harper; Heather A Harrington; Raphael Heilig; Svenja Hester; Jennifer Hill; Charles Hinds; Clare Hird; Ling-Pei Ho; Renee Hoekzema; Benjamin Hollis; Jim Hughes; Paula Hutton; Matthew Jackson; Ashwin Jainarayanan; Anna James-Bott; Kathrin Jansen; Katie Jeffery; Elizabeth Jones; Luke Jostins; Georgina Kerr; David Kim; Paul Klenerman; Julian C Knight; Vinod Kumar; Piyush Kumar Sharma; Prathiba Kurupati; Andrew Kwok; Angela Lee; Aline Linder; Teresa Lockett; Lorne Lonie; Maria Lopopolo; Martyna Lukoseviciute; Jian Luo; Spyridoula Marinou; Brian Marsden; Jose Martinez; Philippa Matthews; Michalina Mazurczyk; Simon McGowan; Stuart McKechnie; Adam Mead; Alexander J Mentzer; Yuxin Mi; Claudia Monaco; Ruddy Montadon; Giorgio Napolitani; Isar Nassiri; Alex Novak; Darragh O'Brien; Daniel O'Connor; Denise O'Donnell; Graham Ogg; Lauren Overend; Inhye Park; Ian Pavord; Yanchun Peng; Frank Penkava; Mariana Pereira Pinho; Elena Perez; Andrew J Pollard; Fiona Powrie; Bethan Psaila; T. Phuong Quan; Emmanouela Repapi; Santiago Revale; Laura Silva-Reyes; Jean-Baptiste Richard; Charlotte Rich-Griffin; Thomas Ritter; Christine S Rollier; Matthew Rowland; Fabian Ruehle; Mariolina Salio; Stephen N Sansom; Alberto Santos Delgado; Tatjana Sauka-Spengler; Ron Schwessinger; Giuseppe Scozzafava; Gavin Screaton; Anna Seigal; Malcolm G Semple; Martin Sergeant; Christina Simoglou Karali; David Sims; Donal Skelly; Hubert Slawinski; Alberto Sobrinodiaz; Nikolaos Sousos; Lizzie Stafford; Lisa Stockdale; Marie Strickland; Otto Sumray; Bo Sun; Chelsea Taylor; Stephen Taylor; Adan Taylor; Supat Thongjuea; Hannah Thraves; John A Todd; Adriana Tomic; Orion Tong; Amy Trebes; Dominik Trzupek; Felicia A Tucci; Lance Turtle; Irina Udalova; Holm Uhlig; Erinke van Grinsven; Iolanda Vendrell; Marije Verheul; Alexandru Voda; Guanlin Wang; Lihui Wang; Dapeng Wang; Peter Watkinson; Robert Watson; Michael Weinberger; Justin Whalley; Lorna Witty; Katherine Wray; Luzheng Xue; Hing Yuen Yeung; Zixi Yin; Rebecca K Young; Jonathan Youngs; Ping Zhang; Yasemin-Xiomara Zurke.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256877

RESUMO

Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete understanding of potentially druggable immune mediators of disease. To advance this, we present a comprehensive multi-omic blood atlas in patients with varying COVID-19 severity and compare with influenza, sepsis and healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity revealed cells, their inflammatory mediators and networks as potential therapeutic targets, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Tensor and matrix decomposition of the overall dataset revealed feature groupings linked with disease severity and specificity. Our systems-based integrative approach and blood atlas will inform future drug development, clinical trial design and personalised medicine approaches for COVID-19.

15.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256571

RESUMO

It is unclear whether prior endemic coronavirus infections affect COVID-19 severity. Here, we show that in cases of fatal COVID-19, antibody responses to the SARS-COV-2 spike are directed against epitopes shared with endemic beta-coronaviruses in the S2 subunit of the SARS-CoV-2 spike protein. This immune response is associated with the compromised production of a de novo SARS-CoV-2 spike response among individuals with fatal COVID-19 outcomes.

16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21254128

RESUMO

Tocilizumab (TCZ), an IL-6 receptor antagonist, is used in the treatment of COVID. However, this agent carries a black box warning for infection complications, which may include reactivation of tuberculosis (TB) or hepatitis B virus (HBV), or worsening of hepatitis C virus (HCV). Due to the pace of clinical research during the COVID pandemic, prospective evaluation of these risks has not been possible. We undertook a systematic review, generating mean cumulative incidence estimates for reactivation of HBV and TB at 3.3% and 4.3%. We could not generate estimates for HCV. These data derive from heterogeneous studies pre-dating the COVID outbreak, with differing epidemiology and varied approaches to screening and prophylaxis. We underline the need for careful individual risk assessment prior to TCZ prescription, and present an algorithm for clinical stratification. There is an urgent need for ongoing collation of safety data as TCZ therapy is used in COVID. KEY POINTSUse of tocilizumab treatment in COVID-19 may risk infective complications. We have undertaken a systematic literature review to assess the risks of reactivation of HBV and TB, generating mean estimates of 3.3% and 4.3% incidence, respectively.

17.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20247841

RESUMO

BackgroundThere has been great concern amongst clinicians and patients that immunomodulatory treatments for IBD may increase risk of SARS-CoV-2 susceptibility or progression to severe disease. MethodsSera from 640 patients attending for maintenance infliximab or vedolizumab infusions between April and June 2020 at the John Radcliffe Hospital (Oxford, UK) and Royal London Hospital (London, UK) were tested using the Abbott SARS-CoV-2 IgG assay. Demographic and clinical data were collated from electronic patient records and research databases. ResultsSeropositivity rates of 3.0% (12/404), 7.2% (13/180), and 12.5% (7/56) were found in the Oxford and London adult IBD cohorts and London paediatric IBD cohorts respectively. Seroprevalence rates in the Oxford adult IBD cohort were lower than that seen in non-patient facing health-care workers within the same hospital (7.2%). Seroprevalence rates of the London paediatric IBD cohort were comparable to a contemporary healthy cohort collected at the same hospital (54/396, 13.6%). ConclusionsSARS-CoV-2 seropositivity rates are not elevated in patients with IBD receiving maintenance infliximab or vedolizumab infusions. There is no rationale based on these data for elective interruption of maintenance therapy, and we recommend continuation of maintenance therapy. These data do not address the efficacy of vaccination in these patients.

18.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20205054

RESUMO

BackgroundThe medium-term effects of Coronavirus disease (COVID-19) on multiple organ health, exercise capacity, cognition, quality of life and mental health are poorly understood. MethodsFifty-eight COVID-19 patients post-hospital discharge and 30 comorbidity-matched controls were prospectively enrolled for multiorgan (brain, lungs, heart, liver and kidneys) magnetic resonance imaging (MRI), spirometry, six-minute walk test, cardiopulmonary exercise test (CPET), quality of life, cognitive and mental health assessments. FindingsAt 2-3 months from disease-onset, 64% of patients experienced persistent breathlessness and 55% complained of significant fatigue. On MRI, tissue signal abnormalities were seen in the lungs (60%), heart (26%), liver (10%) and kidneys (29%) of patients. COVID-19 patients also exhibited tissue changes in the thalamus, posterior thalamic radiations and sagittal stratum on brain MRI and demonstrated impaired cognitive performance, specifically in the executive and visuospatial domain relative to controls. Exercise tolerance (maximal oxygen consumption and ventilatory efficiency on CPET) and six-minute walk distance (405{+/-}118m vs 517{+/-}106m in controls, p<0.0001) were significantly reduced in patients. The extent of extra-pulmonary MRI abnormalities and exercise tolerance correlated with serum markers of ongoing inflammation and severity of acute illness. Patients were more likely to report symptoms of moderate to severe anxiety (35% versus 10%, p=0.012) and depression (39% versus 17%, p=0.036) and a significant impairment in all domains of quality of life compared to controls. InterpretationA significant proportion of COVID-19 patients discharged from hospital experience ongoing symptoms of breathlessness, fatigue, anxiety, depression and exercise limitation at 2-3 months from disease-onset. Persistent lung and extra-pulmonary organ MRI findings are common. In COVID-19 survivors, chronic inflammation may underlie multiorgan abnormalities and contribute to impaired quality of life. FundingNIHR Oxford and Oxford Health Biomedical Research Centres, British Heart Foundation Centre for Research Excellence, UKRI, Wellcome Trust, British Heart Foundation.

19.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20205831

RESUMO

Serological detection of antibodies to SARS-CoV-2 is essential for establishing rates of seroconversion in populations, detection of seroconversion after vaccination, and for seeking evidence for a level of antibody that may be protective against COVID-19 disease. Several high-performance commercial tests have been described, but these require centralised laboratory facilities that are comparatively expensive, and therefore not available universally. Red cell agglutination tests have a long history in blood typing, and general serology through linkage of reporter molecules to the red cell surface. They do not require special equipment, are read by eye, have short development times, low cost and can be applied as a Point of Care Test (POCT). We describe a red cell agglutination test for the detection of antibodies to the SARS-CoV-2 receptor binding domain (RBD). We show that the Haemagglutination Test ("HAT") has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. The HAT can be titrated, detects rising titres in the first five days of hospital admission, correlates well with a commercial test that detects antibodies to the RBD, and can be applied as a point of care test. The developing reagent is composed of a previously described nanobody to a conserved glycophorin A epitope on red cells, linked to the RBD from SARS-CoV-2. It can be lyophilised for ease of shipping. We have scaled up production of this reagent to one gram, which is sufficient for ten million tests, at a cost of [~]0.27 UK pence per test well. Aliquots of this reagent are ready to be supplied to qualified groups anywhere in the world that need to detect antibodies to SARS-CoV-2, but do not have the facilities for high throughput commercial tests.

20.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20202929

RESUMO

A major issue in identification of protective T cell responses against SARS-CoV-2 lies in distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity generated by exposure to other coronaviruses. We characterised SARS-CoV-2 T cell immune responses in 168 PCR-confirmed SARS-CoV-2 infected subjects and 118 seronegative subjects without known SARS-CoV-2 exposure using a range of T cell assays that differentially capture immune cell function. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) were found in those who had been infected by SARS-CoV-2 but were rare in pre-pandemic and unexposed seronegative subjects. However, seronegative doctors with high occupational exposure and recent COVID-19 compatible illness showed patterns of T cell responses characteristic of infection, indicating that these readouts are highly sensitive. By contrast, over 90% of convalescent or unexposed people showed proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on the choice of assay and antigen. Memory responses to specific non-spike proteins provides a method to distinguish recent infection from pre-existing immunity in exposed populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...